
CyUSB Suite for Linux
Version 1.0.4

Programmer's Guide

1

Document Version History

Version Date Author Notes
1.0.0 08/07/12 V.Radhakrishnan Detailed function description documentation

added (format of libusb documentation)

1.0.2 10/01/12 Cypress
Semiconductor

Update documentation formatting

1.0.3 01/23/13 Cypress
Semiconductor

Updated version information.
No API changes involved in this version.

1.0.4 07/11/13 Cypress
Semiconductor

No API changes involved in this version.
A new download_fx3 example is provided for
FX3 firmware programming.
download_fx2 example has been enhanced to
support I2C programming.
cyusb_linux GUI has been enhanced to support
single step download of FX2/FX3 firmware to
EEPROM.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 1

2

Chapter – 1 : Introduction to CyUSB Suite for Linux

This guide helps you get started quickly with CyUSB Suite for Linux.

The software is a clone of the CyUSB Suite for Windows and helps you work with the EZ-USB
FX2LP and FX3 USB Peripheral Controllers from Cypress, using a Linux host computer.

The FX2LP Peripheral Controller combines USB (High Speed) with an integrated, enhanced
industry standard 8051 micro-controller, whereas the FX3 Peripheral Controller combines Super
Speed USB 3.0 with an integrated ARM-9 based micro-controller. More details can be obtained by
looking at the device data sheets available on the Cypress website.

The CyUSB Suite for Linux does not help you develop firmware either for the FX2 or FX3.
However, firmware already developed using either the Keil Tools for FX2 or the Eclipse IDE and
the GNU tool-chain for FX3, may be downloaded using the CyUSB Suite for Linux and drivers for
the peripherals (host side) can be developed using the user space library provided by this software

The CyUSB Suite for Linux is a wrapper around an existing Open Source user-space USB Library
called libusb.

The CyUSB Suite gets you started quickly with a simplified wrapper around libusb, as well as by
providing an infrastructure for testing your peripheral after the firmware is downloaded.

In other words, the libusb software is a pure 'C' library on linux, whereas the CyUSB Suite for
Linux is a full-fledged Application built on top of libusb in two flavors :

1. As a Command Line Interface [CLI]

2. With a GUI built as a Qt based application

The CyUSB Suite also provides a header file 'cyusb.h' and a shared object library 'libcyusb.so'
which can be used to build your own user space USB applications. The applications in the CyUSB
suite have been developed using the same library and header file.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 2

The Linux Kernel

The sys filesystem

libusb library

CyUSB Suite for Linux
/etc/cyusb.conf

/etc/udev/rules.d/88-cyusb.rules

Figure-1 : Block Diagram of CyUSB Suite for Linux

3

Chapter - 2 : Folder structure
Once the building process is complete the following folder are created .

 The doc subdirectory contains the user guide and programmers guide (this manual).

The configs subdirectory contains three files -

• cyusb.conf

• 88-cyusb.rules

• cy_renumerate.sh

The cyusb.conf can be modified to include additional 'devices of interest', which means those
devices (typically Cypress devices, but not necessarily so) which you wish to communicate with
CyUSB Suite for Linux.

NOTE:
If a Cypress device is attached and you are not getting a notification on GUI, then add the
VID and PID of the new device to /etc/cyusb.conf manually. This step requires root (super-
user) privileges.
The 88-cyusb.rules is a simple UDEV rules file that can also be modified to indicate devices of
interest (again, typically Cypress devices, but not necessarily so).

The cy_renumerate.sh script is responsible for sending a notification of plug/unplug of a device of
interest to the cyusb driver library.

More information about these files would be provided later on in this guide.

The fx2_images and fx3_images sub-directories contains a set of firmware binaries that can be
downloaded into the EZ-USB devices to demonstrate sample applications. These binaries are for
the FX2LP and FX3 devices respectively.

The include sub-directory contains the main cyusb.h header file that has been used by the CLI as
well as the GUI applications that constitute CyUSB Suite For Linux.

The lib subdirectory contains the source code as well as the shared object (equivalent to 'DLL' on
Microsoft Windows) for libcyusb, the main library used to build CyUSBSuite for Linux. The
source file is called libcyusb.c, whereas the shared object file is called libcyusb.so.1 and a soft link
target called libcyusb.so which is the soname for the library.

The src subdirectory contains all the CLI Application sources used. A makefile is also provided to
build the various sample applications.

The gui_src subdirectory contains the source for the GUI, which is developed using QT.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 3

4

Chapter - 3 : Getting started
It is assumed that the installation procedure documented in the user guide document has been
followed before starting with the following steps.

Building the binaries :
Go to the src directory and do make to build all the example source files.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 4

5

Test to see if everything is installed fine, by first plugging in the FX2LP DVK and then running the
01_getdesc program.

Example - Get Device Descriptor : 01_getdesc.c
$./01_getdesc

The various programs demonstrated in the src directory can be run on the FX2 and/or FX3 devices.
Some programs require a firmware binary to be downloaded and this is also illustrated in this
guide, where appropriate.

Example - Get Device Configuration : 03_getconfig.c
$./03_getconfig

Example - Attach / Detach Kernel Mode Driver for an USB device
$./04_kerneldriver

(C) Cypress Semiconductor Corporation / ATR-LABS Page 5

6

This example shows how to detach a kernel mode driver (if one exists) before you attach a user
mode driver through CyUSB.

For a USB device, there is a driver per interface and each interface has to be free (not claimed)
before it can be used for data traffic.

Therefore, if a device-interface already has a driver interface claimed by a kernel driver module,
this has to be first released ('freed') before you can use it with CyUSB.

Example - Claim an interface for a USB device
$./05_claiminterface

Example - Set an alternate interface (after claiming an interface)
The FX2 device has 1 interface, and four alternate interfaces numbered as 0, 1, 2 and 3. The
alternate interface selected by default is 0.

We will demonstrate how to select an alternate interface of 1 for the interface 1

$./06_setalternate

The download_fx2 example supports downloading FX2LP firmware into the RAM (internal or
external), small I2C EEPROM or large I2C EEPROM.

Example - Downloading the dev_io.hex file to the FX2LP RAM
$./download_fx2 -i ../fx2_images/dev_io.hex -t ram
Download the dev_io.hex firmware example that demonstrates GPIO based switches and 7-
segment LED display on the FX2LP DVK.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 6

7

Example - Downloading the bulkloop.iic file to large I2C EEPROM
The bulkloop firmware loops back EP2OUT to EP6IN and EP4OUT to EP8IN. The iic version of
the firmware binary (generated through hex2bix) is downloaded to the large I2C EEPROM in this
example.

Please note that only iic files should be downloaded to the I2C EEPROMs. The download program
does not do any verification of the file format or content.

$./download_fx2 ../fx2_images/bulkloop.iic -t li2c

Test with the program 08_cybulk, the program echoes what you type in...
$./08_cybulk

The download_fx3 program supports FX3 firmware download to device RAM, I2C
EEPROM or SPI Flash devices.
Example - Downloading the cyfxbulksrcsink.img file to FX3 RAM
The cyfxbulksrcsink firmware implements a pair of IN and OUT endpoints that serve as perfect
data sink and source. EP1OUT continuously accepts all data sent to it, and EP1IN continuously
sends full data packets upto the USB host.

$./download_fx3 -i ../fx3_images/cyfxbulksrcsink.img -i ram

(C) Cypress Semiconductor Corporation / ATR-LABS Page 7

8

Example – Downloading FX3 firmware to I2C EEPROM
$./download_fx3 -i ../fx3_images/cyfxbulksrcsink.img -i i2c
Download the cyfxbulksrcsink firmware onto I2C EEPROM devices. The download_fx3 program
automatically downloads the cyfxflashprog firmware to FX3 RAM, and then uses it to do the
EEPROM programming. As the I2C programming is really slow, this operation could take upto a
couple of minutes.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 8

9

Chapter - 4 : Programmers Guide to the CyUSB Library

This chapter gives details on how to develop code using the CyUSB Suite for Linux, as well as
steps to compile and link the code, using the libcyusb.so library

Developing code :

The cyusb.h header file present in $CyHome/include subdirectory, needs to be included in your
program.

For example, if you are in the $CyHome/src subdirectory, you would say

#include “../include/cyusb.h”

This header file describes one major data type called struct cydev, which is declared as follows :

struct cydev {
 cyusb_device *dev;
 cyusb_handle *handle;
 unsigned short vid;
 unsigned short pid;
 unsigned char is_open;
 unsigned char busnum;
 unsigned char devaddr;
 unsigned char filler;
};

The cyusb_device data-type maps to the opaque libusb data-type called struct libusb_device, and
the cyusb_handle data-type maps to the opaque libusb data-type called
struct libusb_device_handle.

1. Opening a device (and populating the cydev array)

int cyusb_open(void);

This function populates the cydev [] array and returns the number of interesting devices
found. An 'interesting device' or alternatively, 'a device of interest' is a device whose
vendor ID/device ID is present in the /etc/cyusb.conf file described earlier.

This function is overloaded and a simpler alternative is

int cyusb_open(unsigned short vid, unsigned short pid);

which populates the cydev array with just one entry and returns 1 if a single device is found
that matches the vendor ID and device ID mentioned in the parameters. Usually, you would
typically get a return value of 1, since you would be dealing with a single device of interest,

(C) Cypress Semiconductor Corporation / ATR-LABS Page 9

10

but the library has been built (and tested) to support multiple instances of the same vendor
id/device id combinations, in which case, you would need to traverse the cydev[] array and
extract the handle for the appropriate device by matching with bus number and device
address.

2. Obtaining a cyusb_handle

cyusb_handle * cyusb_gethandle(int index);

This function usually takes as input parameter the number 0 since you would usually be
dealing with a single device of interest, as discussed earlier. The function then returns a non-
null cyusb_handle which is then used subsequently for data transfers.

3. Getting Device Information

Given a handle, it is possible to extract the vendor ID and device ID as follows :

unsigned short cyusb_getvendor(cyusb_handle *); and
unsigned short cyusb_getproduct(cyusb_handle *);

4. Closing all cyusb devices of interest

void cyusb_close(void);

This function closes ALL cyusb devices of interest discovered.

5. Getting Bus Number and Device Address, given the handle

int cyusb_get_busnumber(cyusb_handle *);
int cyusb_get_devaddr(cyusb_handle *);

These two functions return th bus number and the device address, given the handle. Since
the handle itself is returned, given the index of the cydev[] array, it is useful in those
circumstances where you have multiple instances of the same device.

6. Determining whether a usb device interface already is claimed by a kernel driver

The CyUSB Suite for Linux software is essentially a user mode driver library for a device.
This means it is possible to communicate with a USB device provided it is not already
claimed by another driver (user mode or kernel mode). The function described below
returns true if a kernel mode driver is active for a given usb device handle :

int cyusb_kernel_driver_active(cyusb_handle *, int interface);

7. Detach / Attach a kernel mode driver for a usb device of interest :

In case a device already has a kernel mode driver active, as returned by true in the earlier
API described just above, then this API allows one to detach a kernel mode driver, which is

(C) Cypress Semiconductor Corporation / ATR-LABS Page 10

11

then normally followed by claiming the interface by a user mode application like CyUSB
Suite.
int cyusb_detach_kernel_driver(cyusb_handle *, int interface);
int cyusb_attach_kernel_driver(cyusb_handle *, int interface);

8. Claiming and releasing an interface :

User mode applications such as CyUSB Suite for Linux, can only work after claiming an
interface. Use the following API.

int cyusb_claim_interface(cyusb_handle *h, int interface);

and the API for releasing the interface is :

int cyusb_release_interface(cyusb_handle *h, int interface);

9. Getting USB Descriptors through a standard request :

int cyusb_get_descriptor(cyusb_handle *h, unsigned char desc_type,
unsigned char desc_index,unsigned char *data, int len);

This function translates into the standard USB Request using a control type of transfer.

However, there are easier and more direct API to obtain Device, Configuration, String etc.

int cyusb_get_device_descriptor(cyusb_handle *h,
struct libusb_device_descriptor *desc);

int cyusb_get_active_config_descriptor(cyusb_handle *h,
struct libusb_config_descriptor **);

int cyusb_get_config_descriptor(cyusb_handle *h, unsigned char index,
struct libusb_config_descriptor **);

int cyusb_get_config_descriptor_by_value(cyusb_handle *h,
unsigned char bConfigurationValue, struct libusb_config_descriptor **config);

10. Doing Data Transfers, after obtaining the handle :

int cyusb_control_transfer (cyusb_handle *h, unsigned char bmRequestType,
unsigned char bRequest, unsigned short wValue,
unsigned short wIndex, unsigned char *data,
unsigned short wLength, unsigned int timeout);

int cyusb_bulk_transfer(cyusb_handle *h, unsigned char endpoint,
unsigned char *data, int length, int *transferred, int timeout);

int cyusb_interrupt_transfer(cyusb_handle *h, unsigned char endpoint,

(C) Cypress Semiconductor Corporation / ATR-LABS Page 11

12

unsigned char *data, int length, int *transferred, unsigned int timeout);

These translate directly into libusb commands and hence you are requested to look into the
libusb library for more details.

Downloading Firmware into FX2

download_fx2.c

This program downloads a .hex file into the FX2 device.

The invocation of this program is as follows :

./download_fx2 <file.hex> OR

./download ../fx2_images/download.hex <file.hex>

The first form of the invocation is used when we wish to download a single .hex file directly using
the Vendor Extension 0xA0 command.

The second form of the download invocation is used when we wish to download a .hex file using
the Vendor Extension 0xA3 command (loading an image into external RAM).

Note: The Library does not provide an interface for Isochronous data transfer. Please refer to
cyisoread_sample.c and cyisowrite_sample.c in /src folder for reference on how to use the libusb
APIs to do Isochronous data transfers.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 12

13

 Using the library - Detailed Function Documentation

Structure Documentation
typedef struct libusb_device cyusb_device; /* Opaque object from libusb */
typedef struct libusb_device_handle cyusb_handle; /* Opaque object from libusb */

struct cydev {
cyusb_device *dev; /* as above ... */
cyusb_handle *handle; /* as above ... */
unsigned short vid; /* Vendor ID */
unsigned short pid; /* Product ID */
unsigned char is_open; /* When device is opened, val = 1 */
unsigned char busnum; /* The bus number of this device */
unsigned char devaddr; /* The device address */
unsigned char filler; /* Padding to make struct = 16 bytes */

};

The above structure gets populated (as an array) when the library is opened using the
cyusb_open() call or the overloaded function cyusb_open(unsigned short vid, unsigned short pid);
The array would contain only 'devices of interest' i.e if the device is mentioned in the configuration
file /etc/cyusb.conf.

Function Documentation

Prototype : int cyusb_open(void);
Description : This initializes the underlying libusb library, populates the cydev[] array, and

returns the number of devices of interest detected. A 'device of interest' is a
device which appears in the /etc/cyusb.conf file.

Parameters : None
Return Value : Returns an integer, equal to number of devices of interest detected.

Prototype : int cyusb_open(unsigned short vid, unsigned short pid);
Description : This is an overloaded function that populates the cydev[] array with just one
device that matches the provided vendor ID and Product ID.
Parameters : unsigned short vid : Vendor ID

unsigned short pid : Product ID
Return Value : Returns 1 if a device of interest exists, else returns 0. This function is only

useful if you know in advance that there is only 1 device with the given VID
and PID attached to the host system.

(C) Cypress Semiconductor Corporation / ATR-LABS Page 13

14

Prototype : cyusb_handle * cyusb_gethandle(int index);
Description : This function returns a libusb_device_handle given an index from the

cydev[] array.
Parameters : int index : Equal to the index in the cydev[] array that gets populated during

the cyusb_open() call described above.
Return Value : Returns the pointer to a struct of type cyusb_handle, also called as

libusb_device_handle.

Prototype : unsigned short cyusb_getvendor(cyusb_handle *);
Description : This function returns a 16-bit value corresponding to the vendor ID given a

device's handle.
Parameters : cyusb_handle *handle : Pointer to a struct of type cyusb_handle.
Return Value : Returns the 16-bit unique vendor ID of the given device.

Prototype : unsigned short cyusb_getproduct(cyusb_handle *);
Description : This function returns a 16-bit value corresponding to the device ID given a

device's handle.
Parameters : cyusb_handle *handle : Pointer to a struct of type cyusb_handle.
Return Value : Returns the 16-bit product ID of the given device.

Prototype : void cyusb_close(void);
Description : This function closes the libusb library and releases memory allocated to

cydev[].
Parameters : none.
Return Value : none.

Prototype : int cyusb_get_busnumber(cyusb_handle * handle);
Description : This function returns the Bus Number pertaining to a given device handle
Parameters : cyusb_handle *handle : The libusb device handle
Return Value : An integer value corresponding to the Bus Number on which the device

resides. This is also the same value present in the cydev[] array.

Prototype : int cyusb_get_devaddr(cyusb_handle * handle);
Description : This function returns the device address pertaining to a given device handle
Parameters : cyusb_handle *handle : The libusb device handle
Return Value : An integer value corresponding to the device address (between 1 to 127).

This is also the same value present in the cydev[] array.

Prototype : int cyusb_get_max_packet_size(cyusb_handle * handle,
unsigned char endpoint);

Description : This function returns the max packet size that an endpoint can handle,
without taking into account high-bandwidth capability. It is therefore only
useful for Bulk, not Isochronous endpoints.

Parameters : cyusb_handle *handle : The libusb device handle
unsigned char endpoint : The endpoint number

(C) Cypress Semiconductor Corporation / ATR-LABS Page 14

15

Return Value : An integer value corresponding to the max packet size capable of being
handled by that endpoint.

Prototype : int cyusb_get_max_iso_packet_size(cyusb_handle * handle,
 unsigned char endpoint);

Description : This function returns the max packet size that an isochronous endpoint can
handle, after considering multiple transactions per microframe if present.

Parameters : cyusb_handle *handle : The libusb device handle
unsigned char endpoint : The endpoint number

Return Value : An integer value corresponding to the max packet size capable of being
handled by that isochronous endpoint.

Prototype : int cyusb_get_configuration(cyusb_handle * handle,
 int *config);

Description : This function determines the bConfiguration value of the active
configuration.

Parameters : cyusb_handle *handle: The libusb device handle
int * config : Address of an integer variable that will store the

currently active configuration number.
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_set_configuration(cyusb_handle * handle,
 int config);

Description : This function sets the device's active configuration (standard request).
Parameters : cyusb_handle *handle : The libusb device handle

int config : Configuration number required to be made active.
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_claim_interface(cyusb_handle * handle,
 int interface);

Description : This function claims an interface for a given device handle.
You must claim an interface before performing I/O operations on the device.

Parameters : cyusb_handle *handle : The libusb device handle
int interface : The bInterfaceNumber of the interface you wish to

claim.
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_claim_interface(cyusb_handle * handle,
 int interface);

Description : This function claims an interface for a given device handle.
You must claim an interface before performing I/O operations on the device.

Parameters : cyusb_handle *handle : The libusb device handle
int interface : The bInterfaceNumber of the interface you wish to

claim.
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

(C) Cypress Semiconductor Corporation / ATR-LABS Page 15

16

Prototype : int cyusb_release_interface(cyusb_handle * handle,
 int interface);

Description : This function releases an interface previously claimed for a given device
handle.
You must release all claimed interfaces before closing a device handle.
This is a blocking function, where a standard SET_INTERFACE control
request is sent to the device, resetting interface state to the first alternate
setting.

Parameters : cyusb_handle *handle: The libusb device handle
int interface : The bInterfaceNumber of the interface you wish to

release
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_set_interface_alt_setting(cyusb_handle * handle,
 int interface,

 int altsetting);
Description : This function activates an alternate setting for an interface.

The interface itself must have been previously claimed using
cyusb_claim_interface.This is a blocking funcion, where a standard control
request is sent to the device.

Parameters : cyusb_handle *handle: The libusb device handle
int interface : The bInterfaceNumber of the interface you wish to

set.
int altsetting : The bAlternateSetting number to activate

Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_clear_halt(cyusb_handle * handle,
 unsigned char endpoint);

Description : This function clears a halt condition on an endpoint.
Endpoints with a halt condition are unable to send/receive data unless the
condition is specifically cleared by the Host.
This is a blocking funcion.

Parameters : cyusb_handle *handle : The libusb device handle
unsigned char endpoint : The endpoint for which the clear request is

sent.
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

(C) Cypress Semiconductor Corporation / ATR-LABS Page 16

17

Prototype : int cyusb_reset_device(cyusb_handle * handle);
Description : This function performs a USB port reset to the device.

This is a blocking funcion.
Parameters : cyusb_handle *handle : The libusb device handle
Return Value : 0 on success, or an appropriate LIBUSB_ERROR

Prototype : int cyusb_kernel_driver_active(cyusb_handle * handle,
int interface);

Description : This function returns whether a kernel driver has already claimed an
interface.

If a kernel driver is active and has claimed an interface, cyusb cannot
perform I/O operations on that interface unless the interface is first released.

Parameters : cyusb_handle *handle: The libusb device handle
int interface : The interface which you are testing.

Return Value : 0 if no kernel driver is active, 1 if a kernel driver IS active or an appropriate
error.

Prototype : int cyusb_detach_kernel_driver(cyusb_handle * handle,
 int interface);

Description : This function detaches a kernel mode driver (in order for cyusb to claim the
interface)

If a kernel driver is active and has claimed an interface, cyusb cannot
perform I/O operations on that interface unless the interface is first released.

Parameters : cyusb_handle *handle: The libusb device handle

int interface : The interface which you want to be detached.

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

Prototype : int cyusb_attach_kernel_driver(cyusb_handle * handle,
 int interface);

Description : This function reattaches a kernel mode driver which was previously detached

Parameters : cyusb_handle *handle : The libusb device handle

int interface : The interface which you want to be reattached.

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

Prototype : int cyusb_get_device_descriptot(cyusb_handle * handle,
struct libusb_device_descriptor *);

Description : This function returns the usb device descriptor for the given device.

Parameters : cyusb_handle *handle : The libusb device handle

struct libusb_device_descriptor *desc: Address of a device_desc structure

(C) Cypress Semiconductor Corporation / ATR-LABS Page 17

18

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.The
libusb_device_descriptor structure will contain detailed information if
success.

Prototype : int cyusb_get_active_config_descriptor(cyusb_handle * handle,
struct libusb_config_descriptor **);

Description : This function returns the usb configuration descriptor for the given device.

Only valid if return value was 0.

Must be freed with cyusb_free_config_descriptor() explained below.

Parameters : cyusb_handle *handle : The libusb device handle

struct libusb_configuration_descriptor **desc: Address of a
config_descriptor

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

The libusb_config_descriptor structure will contain detailed information if
success.

Prototype : int cyusb_get_config_descriptor(cyusb_handle * handle,
unsigned char index,
struct libusb_config_descriptor **);

Description : This function returns the usb configuration descriptor for the given device.

Only valid if return value was 0.

Must be freed with cyusb_free_config_descriptor() explained below.

Parameters : cyusb_handle *handle : The libusb device handle

unsigned char index : Index of configuration you wish to retrieve.

struct libusb_configuration_descriptor **desc : Address of a
config_descriptor

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

The libusb_config_descriptor structure will contain detailed information if
success.

Prototype : void cyusb_free_config_descriptor(
struct libusb_config_descriptor *);

Description : Frees the configuration descriptor obtained earlier.

Parameters : struct libusb_config_descriptor * : The config descriptor you wish to free.

Return Value : NIL.

Prototype : void cyusb_control_transfer(cyusb_handle *h,

(C) Cypress Semiconductor Corporation / ATR-LABS Page 18

19

 unsigned char bmRequestType,
 unsigned char bRequest,
 unsigned short wValue,
 unsigned short wIndex,
 unsigned char *data,
 unsigned short wLength,
 unsigned int timeout);

Description : Performs a USB Control Transfer.

Parameters : cyusb_handle *h : Device handle

unsigned char bmRequestType: The request type field for the setup packet

unsigned char bRequest : The request field of the setup packet

unsigned short wValue : The value field of the setup packet

unsigned short wIndex : The index field of the setup packet

unsigned char *data : Data Buffer (for input or output)

unsigned short wLength : The length field of the setup packet

 The data buffer must be at least this size.

unsigned int timeout : Timeout in milliseconds.

 For unlimited timeout, use 0.

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

Prototype : void cyusb_bulk_transfer(cyusb_handle *h,
 unsigned char endpoint,
 unsigned char *data,
 int length,
 int *transferred,
 int timeout);

Description : Performs a USB Bulk Transfer.

Parameters : cyusb_handle *h : Device handle

unsigned char endpoint : Address of endpoint to communicate with

unsigned char *data : Data Buffer (for input or output)

unsigned short wLength : The length field of the data buffer for read or
write

int * transferred : Output location of bytes actually transferred

(C) Cypress Semiconductor Corporation / ATR-LABS Page 19

20

unsigned int timeout : Timeout in milliseconds.
 For unlimited timeout, use 0.

Return Value : 0 on success, or an appropriate LIBUSB_ERROR.

Prototype : void cyusb_download_fx2 (cyusb_handle *handle, char *filepath ,
char vendor_command);

Description : Downloads firmware on to Fx2 device.

Parameters : cyusb_handle *handle: Device handle

filepath : Path for the FX2 firmware file.

vendor_command : Vendor command specifying where to load the
firmware.This normally needs to be 0xA0 as

firmware is loaded to RAM.

Return Value : 0 on success or an appropriate LIBUSB_ERROR

Prototype : void cyusb_download_fx3(cyusb_handle *handle, char *filepath);
Description : Downloads the firmware on to fx3 device

Parameters : cyusb_handle *handle: Device handle

filepath : Path for the FX3 firmware file.

Return Value : 0 on success or an appropriate LIBUSB_ERROR

(C) Cypress Semiconductor Corporation / ATR-LABS Page 20

	CyUSB Suite for Linux
	Chapter – 1 : Introduction to CyUSB Suite for Linux
	Chapter - 2 : Folder structure
	Chapter - 3 : Getting started
	Chapter - 4 : Programmers Guide to the CyUSB Library
	 Using the library - Detailed Function Documentation

